

Effective from Session: 2020-21							
Course Code	BS541	Title of the Course	Medical Microbiology	L	T	P	С
Year	II	Semester	III	3	1	0	4
Pre-Requisite	UG in Biological Science	Co-requisite					
Course Objectives	To introduce basic principles a pathogens related with infectio		f clinical disease. It covers all biology of bac	teria, v	viruses a	and oth	er

	Course Outcomes
001	
CO1	Gain information about the concepts of medical microbiology and gain knowledge on medically important micro-organisms, classification and
	normal flora of human body.
CO2	Gain knowledge of diseases and types of infections; mechanism of microbial pathogenesis; endo and exotoxins; sample collection and
	identification.
CO3	Understand Systematic Microbiology; diagnosis, identification and prevention of pathogenic microorganisms.
CO4	Gain knowledge on Water borne infections caused by bacteria.
CO5	Gain knowledge on Nosocomial infections and various chemotherapeutic agents and their

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Principles of Medical Microbiology	Classification of medically important micro-organisms. Normal flora of human body— Origin of normal flora, role of the resident flora, effect of antimicrobial agents on normal flora, factors influencing normal flora (Skin, conjunctiva, nose, nasopharynx, sinuses, mouth, upper respiratory tract, intestinal tract, urogenital tract).	8	CO-1
2	Clinical conditions and diagnosis	Factors that influence pathogenicity; Type of infections, source of infections, different modes/means of infections; Diagnostic microbiology – Types of specimen, specimen collection, transportation of specimen, processing; Laboratory diagnosis- haematology, biochemistry, microbiology, serology, radiology and other special methods.	8	CO-2
3	Systematic Microbiology	Detailed study of morphology, cultural characteristics, antigenic structure, pathogenesis, epidemiology, prevention and treatment of the following bacterial pathogens. Air borne infections caused by bacteria–Haemolytic streptococci, Pneumococci, Corynebacterium diphtheriae, Mycobacterium spp., Neisseria meningitidis, Haemophilus influenzae. Sexually transmitted diseases caused by bacteria, Treponema pallidum, Neisseria gonorrhoeae.	8	CO-3
4	Water borne infections	E. coli, Salmonella typhi, Shigella dysenteriae, Vibrio cholera; Wound infections caused by bacteria – Staphylococcus aureus, Clostridium tetani, Pseudomonas; Important fungal diseases and their prevention.	8	CO-4
5	Nosocomial infections & Therapies	Factors that influence hospital infection, hospital pathogens, route of transmission, investigation, prevention and control. Preventive Measures: Antibiotics and chemotherapeutic agents-drug resistance and antibiotic policy; Epidemiology and control of community infection. Alternative and Complimentary medicine-Chinese, European and Indian (Siddha, Ayurveda, Unani etc).	8	CO-5

Reference Books:

- 1. Chaechter M. Medoff G. and Eisenstein BC. (1993) Mechanism of Microbial Diseases 2nd edition.
- 2. Williams and Wilkins, Baltimore.
- 3. David Greenwood, Richard CD, Slack, John Forrest Peutherer. (1992) Medical Microbiology. 14th edition. ELBS with Churchill Livingstone

e-Learning Source:

				Course Ar	ticulation M	Iatrix: (Maj	pping of CO	s with POs	and PSOs)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	1			1	3	1	2	3			
CO2	3	1			1	3	1	2	3		2	
CO3	3	1				3	1	2	3			
CO4	3	1				3	1	2	3			
CO5	3	1		1	1	3	1	3	3		3	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	Effective from Session: 2020-21						
Course Code	BS542	2 I and an end of the course					
Year	II	Semester	III	3	1	0	4
Pre-Requisite	UG in Biological Science	Co-requisite					
Course Objectives	mechanism of their working	The course also deals with in rders. The students will be ab	at components associated with immune systemplications of deregulation of basic regulator to describe the roles of the immune systems.	ry net	works tl	hat lead	

	Course Outcomes
CO1	The student will learn the fundamental principles of immune response including molecular, biochemical and cellular basis of immune
	homeostasis
CO2	The course will aid in understanding various aspects of immunological response and how its triggered and regulated.
CO3	The student will learn and understand the rationale behind various assays used in immunodiagnosis of diseases and will be able to transfer
	knowledge of immunology in clinical scenario.
CO4	The course will aid in understanding the principles of Graft rejection, Auto immunity and Antibody based therapy.
CO5	The student will develop the capacity for problem-solving about immune responsiveness, knowledge of the pathogenesis of diseases
	and designing of immunology-based interventions for effective treatment.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Fundamentals of Immunology	Cells and organs of immunity: Memory, specificity, diversity, self vs. non-self-discrimination, Structure of primary and secondary lymphoid organs, Cell mediated vs. humoral immunity, T and B-lymphocytes; Nature of antigen and antibody: Antigen vs. Immunogen, Structure of antibody: constant and variable regions, Fab and Fc; isotype, allotype and idiotype; Abzymes	8	CO-1
2	Antigen-antibody interactions and its measurement	Direct binding assays, Agglutination and precipitation, radioimmunoassay and ELISA, fluorescence analysis, Hybridoma technology, applications of monoclonal antibodies in biomedical research, clinical diagnosis and treatment.	8	CO-2
3	Generation of diversity in the immune response	Clonal selection theory-concept of antigen specific receptors, genes encoding antigen specific receptors on T and B-lymphocytes, genetic rearrangement, class switch, Comparison of receptors and B and T lymphocytes.	8	CO-3
4	Differentiation of B and T lymphocyte	Activation of T cells and B cells by antigen: Antigen processing, Antigen presentation to T cells, Products and factors released by T cell activationinterleukins, interferons, B cell activating factors, T cell and B cell interactions leading to antibody synthesis. Central role of major histocompatibility complex (MHC), genes and products in immune response: T cell recognition of antigen and MHC products, Structure of MHC gene complex and its products polymorphism of MHC gene products, Associated MHC functions-allograft, graft vs. host and mixed leucocyte responses.	8	CO-4
5	Tolerance vs. activation of immune response	Complement- components of classical and alternative pathways. Hypersensitivity: Types I, II, III and IV responses. Autoimmunity. Host Immune Response against intracellular and extracellular microbes; Principles and strategy for developing vaccines	8	CO-5

Reference Books:

- Ivan M. Roit. (1994) Essential Immunology Blackwell Scientific Publications, Oxford.
- Janeway travers. (1997). Immuno biology The immuno system in health and disease 3rd edition Current Biology Ltd., London, New York
- 2. 3.
- 4. Immunology: Kuby
- Instant Notes: Lydyard, Whelan, Fanger

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	1				3		1		3		
CO2	3	1				3		1		3	3	
CO3	3	1				3		1		3		
CO4	3	1				3		1		3		
CO5	3	1				3		1		3	3	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21							
Course Code	BS543	Title of the Course	Recombinant DNA Technology	L	T	P	C
Year	II	Semester	III	3	1	0	4
Pre-Requisite	UG in Biological Science	Co-requisite					
Course Objectives			erstanding of Genetic Manipulations and in d other techniques used in genetic engineering		e the c	concepts	s of

	Course Outcomes
CO1	The students will be able to design experiments related to different enzymes used in genetic engineering for DNA manipulations.
CO2	The students will be able to describe different types of plasmid vectors and their characteristics.
CO3	The students will be able to discuss characteristics of phage and yeast cloning vectors.
CO4	The students will be able to explain creation methods and selection parameters of different gene libraries.
CO5	The students will be able to explain the principle and applications of sequencing techniques, mutagenesis, gene silencing, and amplification of
	DNA.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Restriction endonucleases	Class I, II & III restriction enzymes, Nomenclature, Isoschizomers, Heterohypekomers, Unit of restriction enzymes, Restriction digestion: partial and complete, Star activity; Homopolymer tailing, Synthetic Linkers, Adaptors; Roles of DNA ligase, T4 DNA polymerase, Alkaline phosphatase, Reverse transcriptase in cloning.	8	CO-1
2	Plasmids	Plasmid size range, Plasmid classification on basis of phenotypic traits: Cryptic, Fertility, Resistance, Bacteriocinogenic, Degradative, Virulence; Conjugative / non conjugative plasmids; Relaxed and stringent control of copy number; Plasmid incompatibility; Plasmidhost range, Mobilizable plasmids and Triparental mating; Plasmid as cloning vector (recombinant plasmids): Properties of ideal plasmid cloning vectors, Plasmid vectors for E. coli and Agrobacterium; Transcriptional and translational fusion vectors; Selectable markers; Reporter genes.	8	CO-2
3	Cloning vectors	Phage lambda vector, <i>In vitro</i> packaging, Insertional and replacement vectors; Cosmid vectors; M13 phage; Phagemids; Yeast as cloning vector: Basic principles of development of yeast vectors, 2µ plasmid, YEP, YRP YCP, YIP; Artificial chromosomes: YACs, BACs and PACs.	8	CO-3
4	Basic Techniques - I	Gene bank / Genomic library and cDNA library construction; Overview of techniques for recombinant selection and screening: Functional and nutritional complementation, Colony/plaque Immunological screening, HART, HAT.	8	CO-4
5	Basic Techniques - II	Rapid DNA sequencing techniques: Sanger method, Maxam and Gilbert procedure, automated DNA sequencing, pyrosequencing; Genomics: High throughput Sequencing: Microarray; Principle & applications of PCR: RT PCR, Inverse PCR, RACE, Degenerate PCR, Real time PCR, Scorpion PCR, Applications of PCR in gene cloning, TA cloning, pathogen diagnostics, environmental monitoring; Site directed mutagenesis; Antisense RNA technology and its applications.	8	CO-5

Reference Books:

- 1. Freifelder D (2012). Molecular Biology, 5th edition. Narosa Publishing House, India
- $2. \quad Brown, TA~(2020)~Gene~Cloning~and~DNA~Analysis: An~Introduction, \\ 8^{th}~edition.~John~Wiley~\&~Sons$
- 3. Old & Primrose (1980). Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press
- 4. Rastogi & Pathak (2009). Genetic Engineering, Oxford University Press.

e-Learning Source:

				Course Ar	ticulation M	latrix: (Ma _l	pping of CO	s with POs	and PSOs)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	1				3		1		3		
CO2	3	1				3		1		3		
CO3	3	1				3		1		3		
CO4	3	1				3		1		3		
CO5	3	1		1	2	3	1	1		3		

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21										
Course Code	BS544	Title of the Course	Virology & Biosafety	L	T	P	C			
Year	II	Semester	III	3	1	0	4			
Pre-Requisite	UG in Biological Science	Co-requisite								
Course Objectives			provide knowledge on fundamentals ntroduce a concept of biosafety again							

	Course Outcomes
CO1	Know how viruses are classified, diverse viral architecture and genome structure and know the methods used in studying them.
CO2	Understand the architecture of plant viruses and their genomes, gene expression, mode of replication and transmission.
CO3	Understand the architecture of animal viruses and their genomes, gene expression, mode of replication, the intricate interaction between
	viruses and host immune cells and pathogenesis of virus-induced diseases and oncogenesis and know about new and emerging animal viruses
	as: Ebola Virus, Zika Virus, SARS and SARS-CoV2
CO4	Understand the replication and growth of bacteriophages and lysogenic switch, study other virus-related structures and evolution of viruses.
CO5	Assess the proper use of biological containment, and be introduced to safely conduct research, and bioethics in research, identify the role of
	the biosafety professional in biomedical research laboratories.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	General Virology	Brief outline of virology; Discovery and origin of virus; Early development of virology—nomenclature - classification and taxonomy of viruses - based on host, nucleic acids and structure; Concept of ICTV nomenclature and classification of viruses (as per 9th Edition, 2008); Detection and isolation of viruses.	8	CO-1
2	Plant Viruses	Effects of viruses on plants: Morphological, histological and physiological changes; Transmission of plant viruses: a. through vectors- insects, nematodes and fungi b. without vectors- contact, seed and pollens; Life cycles of plant viruses– TMV, Cauliflower Mosaic Virus.	8	CO-2
3	Animal viruses	Retro virus-HIV; Hepatitis viruses–HBV, Influenza virus; Polio virus: General characters, life cycle, pathogenicity and diseases. Immunologic responses of the viruses in Animals; Oncogenic viruses: Virus induced cell transformation and oncogenesis. New and Emerging Animal Viruses: Ebola Virus, Zika Virus, SARS and SARS-CoV2	8	CO-3
4	Bacteriophages, Evolution of viruses and other viral types	Replication of single and double stranded nucleic acids of bacterial viruses, Onestep growth curves of bacteriophages, structure and genetics of phage lambda. Evolution of viruses and brief account of other viral types: Evolution of viruses; Virus related structures – viroids and prions; Satellite RNAs, Virusoids.	8	CO-4
5	Biosafety and Bioethics	Historical Backround; Introduction to Biological Safety Cabinets; Primary Containment for Biohazards; Biosafety Levels; Biosafety guidelines - Government of India; Definition of GMOs; Roles of Institutional Biosafety Committee, RCGM, GEAC etc. for GMO applications in food and agriculture; Environmental release of GMOs; Risk Analysis; Risk Assessment; Risk management and communication. Bioethics: Introduction, necessity and limitation; Ethical conflicts in Biotechnology; Different paradigms of bioethics.	8	CO-5

Reference Books:

- 1. Edward K. Wagner, Martinez J. Hewlett, (2004), Basic Virology, Blackwell Publishing
- 2. Flint S. J., V. R. Racaniello, L. W. Enquist, V. R. Rancaniello, A. M. Skalka, (2003), Principles of Virology: Molecular Biology, Pathogenesis, and Control of Animal Viruses, American Society Microbiology
- 3. Dimmock NJ, Primrose SB. (1994) Introduction to Modern Virology IV edi. Blackwell
- 4. Alan Cann (2001) Molecular Virology

e-Learning Source:

International Congress on Taxonomy of Viruses: http://www.ncbi.nlm.nih.gov/ICTV

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	
CO1	3	1				3	1	1	3				
CO2	3	1				3	1	2	3				
CO3	3	1				3	1	2	3				
CO4	3	1				3	1	1	3				
CO5	3	1	3	3	3	3	2	3	3			3	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020	Effective from Session: 2020-2021										
Course Code	BS545	S545 Title of the Course Food & Dairy Microbiology									
Year	II	Semester	III	3	1	0	4				
Pre-Requisite	UG in Biological Science	Co-requisite									
Course Objectives	foods and their origin and microorganisms in food and	role; Knowledge of the gain knowledge about	chnological, probiotic, pathogens and spoilage factors that determine the presence, grown fermentation techniques used in dairy industry control fermentation process.	th and	l surviv						

	Course Outcomes									
CO1	Learn about fundamentals of food microbiology.									
CO2	Gain insight on spoilage of foods by microbes, microbial food poisoning.									
CO3	Understand the process of fermentation of milk and other food items.									
CO4	Assessment of food quality in reference to microbial contamination.									
CO5	Quality control, packaging, processing parameters of various foods, BIS Laboratory services, certification and licensing of food products.									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Foods and their composition	Types of microorganisms with reference to food and dairy industry- Psychrophiles, osmophiles, halophiles, thermophiles, pH-tolerance and spore formers. Food spoilage - Causes of spoilage, classification of foods by ease of spoilage, Factors affecting the growth of microorganisms in foods. Chemical changes caused by microorganisms.	8	CO-1
2	Microbial flora & their spoilage	Microbial flora and spoilage of meat, fish and fish products, eggs, milk and milk products, fruits, vegetables, bakery products and canned foods. Canned foods: processes, advantages and defects. Methods of food preservation - General principles, preservation by use of chemicals, high temperature, low temperature, irradiation and drying processes, aseptic packaging of materials.	8	CO-2
3	Fermentation of foods	Types of fermentation, production and defects. Fermentation of pickles, butter, cheese, creams, yogurt and ice creams. Role of microbes and microbial enzymes in the fermentation of tea, coffee and cocoa and production of silage.	8	CO-3
4	Milk and milk products	Composition of milk, factors affecting composition of milk, Spoilage of milk and milk products. Milk borne disease, antimicrobial systems in milk, sources of contamination of milk. Chemical and microbiological examination of milk, grading of milk. Starter lactic cultures, biochemical basis of culturing dairy product, management and preparation of starter cultures, starter defects, probiotics.	8	CO-4
5	Food sanitation, Indicator organism	Detection of microorganisms in foods. Food poisoning and food infections. Food quality and assurance: Quality control parameters of various foods with special reference to microbiological quality. Importance of microbiological quality during food processing and packaging. Food borne diseases, their causative agents and control measures.	8	CO-5

Reference Books:

- 1. Milk and Milk Products –Fourth ed. Clarence Henry Eckles TMH Publ.
- 2. Frazier WC and Westhoff DC. (1988) Food microbiology, TATA McGraw Hill Pub. Food
- 3. Microbiology J.De and De.
- $4. \quad Food\ processing:\ Biotechnological\ Applications\ -(2000)\ S.S.\ Marwaha\ \&\ Arora,\ Asitech\ Adams.$
- 5. MR and Moss MO. (1995). Food Microbiology, The Royal Society of Chemistry, Cambridge.

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4		
CO														
CO1	3	1				3	2	3	3					
CO2	3	1				3	2	3	3					
CO3	3	1				3	2	3	3	1	3			
CO4	3	1		1		3	2	3	3		3			
CO5	3	1	1	2	3	3		3				3		
BS545	3	1		1	1	3	2	3	3	1	2	1		

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation								
Name & Sign of Program Coordinator	Sign & Seal of HoD							

Effective from Session: 2020-21									
Course Code	BS546 Title of the Course		RDT and Immunology Lab	L	Т	P	C		
Year	II	Semester	III	0	0	12	6		
Pre-Requisite	UG in Biological Science	Co-requisite							
Course Objectives	The objective of this course i	e objective of this course is to develop the understanding of basics of genetic engineering and PCR							

	Course Outcomes
CO1	The students will be able to perform chromatography techniques: Paper/Column/TLC
CO2	The students will be able to isolate and visualize plasmid DNA, prepare competent cells and carry out transformation and restriction digestion.
CO3	The students will be capable of setting up PCR reactions, blotting (Southern and Northern) and separating proteins by SDS-PAGE
CO4	The students will be able to identify antigen & antibody interactions by double Immunodiffusion: Ouchterlony's Method, perform
	Immunoelectrophoresis and Enzyme Linked Immunosorbent Assay (ELISA)
CO5	The students will be able to determine blood Group, Total WBC count and Total RBC count

Exp. No.	Title of Experiment	Contact Hrs.	Mapped CO
Exp-01	Chromatography techniques: Paper/Column/TLC	9	CO-1
Exp-02	Isolation of plasmid DNA from bacteria	3	CO-2
Exp-03	Size characterization of DNA by agarose gel electrophoresis.	3	CO-2
Exp-04	Preparation of competent E. coli cells and transformation of plasmid DNA to the E. coli cells	6	CO-3
Exp-05	Restriction digestion & ligation	6	CO-3
Exp-06	Southern blotting and northern blotting	9	CO-3
Exp-07	PCR amplification – demonstration.	3	CO-3
Exp-08	Separation of proteins by SDS – PAGE and native gel.	12	CO-3
Exp-09	To identify sensitivity of antigen & antibody by double Immunodiffusion: Ouchterlony's Method, Immunoelectrophoresis	3	CO-4
Exp-10	Enzyme Linked Immunosorbent Assay (ELISA)	3	CO-4
Exp-11	Determination of blood Group, Total WBC count and Total RBC count	3	CO-5

Reference Books:

- 1. Keith Wilson John Walker John M. Walker "Principles and Techniques of PracticalBiochemistry" Chirikjian "Biotechnology Theory & Techniques"
- 2. Joseph Sambrook David W. Russell Joe Sambrook "Molecular Cloning: A Laboratory Manual"
- 3. William M., Ph.D. O'Leary Robert Dony Wu "Practical Handbook of Microbiology"
- 4. Brown, TA "Gene cloning: An introduction"
- 5. Plummer David T., (1988), An introduction to practical biochemistry, 3rd Ed., Tata McGraw-Hill Publishing Co. Ltd. New Delhi, 109-121
- 6. Talwar G. P. (1983) Handbook of Immunology, Vikas Publishing Pvt. Ltd. New Delhi

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	
CO1	3	3	1			3		3		2	3	2	
CO2	3	3	1			3		3		2	3	2	
CO3	3	3	1			3		3		2	3	2	
CO4	3	3	1			3		3		2	3	2	
CO5	3	3	1			3		3		2	3	2	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2023-24									
Course Code	BS551	Title of the Course	Environmental Microbiology	L	T	P	C		
Year	II	Semester	IV	3	1	0	4		
Pre-Requisite	UG with Biology	Co-requisite							
Course Objectives	environmental pollutabout xenobiotic tox	tion and their potential and icity/genotoxicity, mode	omprehensive understanding of the role of microorgoplications in bioremediation. Further the course will of action of pesticides, fungicides, and insecticides, biosensors, and their environmental applications, a	l impa mutat	rt kno ion de				

	Course Outcomes						
CO1	Know about the microbiology of air and aquatic environments, the significance of microbial ecology, the consequences of						
	pollution on ecosystems and human health						
CO2	Know about xenobiotic toxicity and genotoxicity, the mode of action of pesticides, fungicides, and insecticides, as well as the						
	techniques employed in mutation detection						
CO3	Know about the microbial biosensors for pollution detection, techniques for assessing microbial community dynamics, the role						
	of microbes in wastewater treatment and bioenergy production						
CO4	Learn about the toxicogenomics, microbiome and metagenomics application in environment						
CO5	Know about the bioremediation, biodeterioration and case studies of bioremediation						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Microbiology of air and aquatic environments	Microbiology of air and aquatic environments - Microbial ecology and its significance, Impact of pollution on ecosystems and human health, Bacteriological indicators of pollution, Bacteriological examination of water, nuisance bacteria in water systems.	8	CO-1
2	Pollutants and Detection	8	CO-2	
3	Pollution and microbial application	Microbial biosensors for pollution detection and monitoring; Techniques for assessing microbial community dynamics in polluted environments; Microbes in wastewater treatment and bioenergy production; Microbial fuel cells and other emerging technologies for pollution control	8	CO-3
4	Toxicogenomics and metagenomics	Introduction to toxicogenomics and its role in understanding environmental pollution; Microbiomes and their significance; Microbes in extreme environments; Applications of metagenomics in environmental microbiology	8	CO-4
5	Bioremediation	Biodeterioration-concept and control; Bioaccumulation processes and factors influencing bioaccumulation; Bioremediation techniques for different types of pollutants; Case studies on successful bioremediation projects	8	CO-5

Reference Books:

Environmental biotechnology (Industrial pollution Management). Jogdand S.N., Himalaya pub. house.

Water and water pollution hand book, Vol. 1, Leonard L., Ciaccio

Ec Eldowney S, Hardman DJ, Waite S. (1993). Pollution: Ecology and Biotreatment Longman Scientific Technical

Grant WD, Long PL. (1981) Environmental Microbiology. Blackie Glasgow and London

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	
CO1	3	1				3	1	1	3	1	3		
CO2	3	1				1		1	3	1	3		
CO3	3	1				1		1	3	1	3		
CO4	3	1				3	1	1	3	1	3		
CO5	3	1				3	1	1	3	1	3		

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21									
Course Code	BS552	Title of the Course	Commercial & Applied Microbiology	L	T	P	С		
Year	II	Semester	IV	3	1	0	4		
Pre-Requisite	UG in Biological Science	Co-requisite							
Course Objectives	The aim of this course is to	impart the knowledge	of basic principles of Microbiology and t	heir a	pplicati	ons to			

	Course Outcomes							
CO1	The students will be able to discuss the biotechnological application of microalgae.							
CO2	The students will be able to explain the production and significance of biofertilizers							
CO3	The students will be able to compare genomes and proteomes of different microbes.							
CO4	The students will be able to describe the production of single cell protein and its merits and demerits.							
CO5	The students will be able to explain the application of microbes in industrial production of in antibiotics, alcohols etc.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Microbial Biotechnology	Microbial Biotechnology - Definition, Concepts and history, biotechnological potentials of micro algae – food – feed – colourant – fuel and pharmaceutically valuable compounds.	8	CO-1
2	Production of microbial biofertilizers	Production of microbial biofertilizers—Cyanobacteria, <i>Rhizobium, Azotobacter, Azospirillum</i> , <i>Phosphobacteria</i> and vesicular arbuscular mycorrhiza.	8	CO-2
3	Microbial Genomics & Proteomics	Microbial Genomics –whole genome analysis –cDNA microarrays and microchips. Proteomics—multidimensional protein identification technology, DNase Footprinting assay, Yeast two hybrid system	8	CO-3
4	Production of single cell protein	Production of single cell protein - Microorganisms and substrates used, techniques of production, nutritional value of single cell protein, economics of production, merits and demerits of single cell protein.	8	CO-4
5	Industrial microbes and their products	Industrial microbes and their products: A brief idea about the products obtained from microbes – biology of industrial microorganisms such as Streptomyces, yeasts, <i>Spirulina</i> and <i>Penicillium</i> – commercial production of penicillin, ethanol, vinegar, vitamin B12, Protease, citric acid and glutamic acid from microbial sources – production of commercially useful non-microbial products produced through recombinant microbes.	8	CO-5

Reference Books:

- 1. Balasubramanian D, Bryce CFA, Dharmalingam K, Green J, Jayaraman K. (1996). Concepts in Biotechnology University Press, India.
- 2. Borowitzka MA, Borowitzka LJ. (1989), Microalgal Biotechnology, Cambridge University Press.
- 3. Doolittle RF. (1990). Molecular evolution. Computer Analysis of Protein and Nucleic acid Sequences Methods in Enzymology. Academic Press, New York.
- 4. Gerbardt P, Murray RG, Wood WA, Kreig NR. (1994) Methods for General and Molecular Bacteriology ASM, Washington D.C.
- 5. Glazer AN, Nikaido H. (1994) Microbial Biotechnology Fundamentals of Applied Microbiology
- 6. Glick BR, Pasternak JJ. (1994) Molecular Biotechnology, ASM Press, Washingon DC.
- 7. Demain A.L, Davies J.E. 1999. Manual of Industrial Microbiology & Biotechnology. ASM press.
- 8. Mittal D.P. 1999. Indian Patents Law. Taxmann Allied Services (p) Ltd.
- 9. Sikyta B. (1983) Methods in Industrial Microbiology, Ellis Horwood Limited.
- 10. Stanbury PF, Whitaker A, Hall SJ. (1995) Principles of Fermentation Technology, Pergamon Press.

e-Learning Source:

				Course Ar	ticulation M	Iatrix: (Maj	oping of CO	s with POs	and PSOs)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	1				2	1	1	1		3	
CO2	3	1				3	1	1	1		3	
CO3	3	1				3		1	1		3	
CO4	3	1				3	1	1	1		3	
CO5	3	1				3	1	1	1		3	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2023	Effective from Session: 2023-24											
Course Code	BS553	Title of the Course	Pharmaceutical Biotechnology	L	T	P	C					
Year	II	Semester	IV	3	1	0	4					
Pre-Requisite	UG in Biological Science											
Course Objectives	to the insights into various antibodies (mABs), peptide by	therapeutic strategies a ased therapeutics, liposo	spects of pharmaceutical sciences. In this coungainst infectious and non-infectious diseaseme/emulsion-based drug delivery systems, fecting the drug delivery, its release, and ab	ases i. PEG-	e. via							

	Course Outcomes							
CO1	Understand the principle of monoclonal antibodies generation, their mode of action, and their application in targeting various diseases.							
CO2	Understand the basics of therapeutic proteins and peptides generation, factors affecting their stability, and different routes of administration.							
CO3	Prepare lipid-based drug delivery systems as well as PEG-conjugates for fast drug delivery and release inside the body.							
CO4	CO4 Develop the strategies of pulmonary drug delivery.							
CO5	Apply the knowledge of polymers for production of biopharmaceuticals with controlled drug delivery.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Monoclonal antibodies	Monoclonal antibodies: applications, generation, recombinant antibodies, production methods, Pharmaceutical, regulatory and commercial aspects.	8	CO-1					
2	Delivery consideration of Biotechnology Products	Peptide and protein structure; Stability profile, Barriers to peptide and protein delivery, Delivery of protein & peptide drugs; lymphatic transportation of proteins, Site-specific protein modification, Toxicity Profile.	8	CO-2					
3	Proteins and phospholipids: structural properties of phospholipids, injectable lipid emulsions, liposomes, cochleal phospholipids structures; Polymeric systems for oral protein and peptide delivery.								
4	Pulmonary drug delivery systems for biomacromolecules; Lipid based pulmonary delivery; Solid colloidal particles; Preparation of collagen, gelatin particles, albumin microparticles; Polycyanoacrylates; Poly (ether-anhydrides); Diketopiperazine derivatives; Polyethylene glycol conjugates; Factors affecting pulmonary dosing								
5	Polymers used for controlled drug delivery	Polymers used for controlled drug delivery: Hydrophobic polymers poly(esters), poly(cyanoacrylate), poly (ortho esters), poly (phosphazenes), Hydrophobic polymers poly (alkyl methacrylates), poly (methacrylates), poly (acrylates)], alginates, chitosan, polyethylene glycol. Gene therapy: the current viral and non-viral vectors.	8	CO-5					
Refer	ence Books:								
1.	Groves MJ "Pharmaceut	ical Biotechnology', Taylor and Francis Group.							
2.	Crommelin DJA, Robert	D, Sindelar "Pharmaceutical Biotechnology.							
3.	Kayser O, Muller R "Ph	armaceutical Biotechnology'.							
4.	4. Banga AK "Therapeutic peptides and proteins								
5.	5. Walker J.M. and Gingold, E.B. (1983) Molecular Biology & Biotechnology (Indian Edition) Royal Society of Chemistry U.K								
6.	6. S. P. Vyas & V. Dixit. Pharmaceutical Biotechnology.								
e-Le	earning Source:								

				Course Ar	ticulation M	Iatrix: (Ma _l	pping of CO	s with POs	and PSOs)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	1		1		3		2		2	3	
CO2	3	1		1		3		2			3	
CO3	3	1		1		3		2			3	
CO4	3	1		1		3		2		1	3	
CO5	3	1		1		3		2		1	3	

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator Sign & Seal of HoD

Effective from Session: 2020	Effective from Session: 2020-21										
Course Code BS514 Title of the Course Seminar L T											
Year II Semester IV 3 1											
Pre-Requisite	UG in Biological Science	Co-requisite									
Course Objectives	The students will be able to summarize and present the existing data related to a specific topic in the form of a										
Course Objectives	report. Every student will pre-	sent a seminar on a topi	c related to theoretical or experimental, adva	anced t	opic.						

	Course Outcomes
CO1	The students will understand and interpret latest advancements through different technical papers, reports, Journals, Data sheets, books etc
CO2	The students will inculcate the skills for literature survey and will learn to manage resources effectively.
CO3	The students will be able to summarize the recent research and technologies in the form of review and will be able to deliver power point presentations on an assigned topic.
CO4	The students will be able to communicate his/her ideas with his peers as audience, which will enhance both oral and written communication skills.
CO5	The students will be able to create interest to pursue lifelong learning.

				Course Ar	ticulation N	Iatrix: (Ma _l	oping of CO	s with POs	and PSOs)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	2			1	2	1	2	3		1	3
CO2	3					2		2				3
CO3	3	2	1			2		2			1	3
CO4	3	3	3					2	3			3
CO5	3							3				3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21									
Course Code	BS515	Title of the Course	Project Work	L	T	P	C		
Year	II	Semester	IV		0	12	8		
Pre-Requisite	UG in Biological Science	Co-requisite							
Course Objectives	The main objective of this course is to develop independence in experimental design and interpretation and to develop research skills. To promote education and research in biotechnology and provide academic and professional excellence for immediate productivity in industrial, governmental, or clinical settings for an ultimate benefit of society and environment.								

	Course Outcomes						
CO1	The students will be able to perform literature review, identify state of the art in that field.						
CO2	The students will be able to define the problem and develop synopsis of a defined research problem						
CO3	The students will be able to establish a methodology using advanced tools / techniques for solving the problem including project management and finances.						
CO4	The students will be able to prepare the research report and its oral demonstrations.						
CO5	The students will be gain practical experience in project management in biotechnological industry, be able to use various techniques in						
	contemporary research for project, perform numerical analysis and interpret the results						

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3					3	1	3	2	1	3	3
CO2	3					3	1	3	2	1		3
CO3	3					3		3			3	3
CO4	3	2				3		3	2	1		3
CO5	3		2	3		3		3	2	1	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD